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On Measures with Values in Partially Ordered
Spaces†
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Let (X, 6) be a measurable space and X be of the power of the continuum. Let
m be a measure on X with values in partially ordered Abelian group G. Using
g-regularity of G and under the continuum hypothesis, the analogy of the Banach
problem for m is solved in a case when lattice structure of G is not supposed
(this is the case, e.g., in the ordered vector space of Hermitian operators in a
Hilbert space).

1. INTRODUCTION

It is well known that there does not exist on the class of all subsets of
a given set X a finite, nontrivial, s-additive measure m, i.e., m:2X → R, that
assigns 0 to each singleton of X. If X is a countable set, the statement is
obvious; if X has the power of the continuum, the statement has been proved
in ref. 2 under the assumption of the continuum hypothesis.

An analogy of this classical Banach problem for measures having their
values in the Stone algebra C(S) of continuous functions on extremally
disconnected compact Hausdorff space S was given in ref. 5. The result was
achieved under the additional assumption that each meager subset of S is
nowhere dense. This topological property of S is equivalent to the algebraic
property of C(S), which is the weak (s, `)-distributivity (see ref. 9 for details).
In ref. 7 the problem was solved for measures taking their values in weakly
s-distributive vector lattices or lattice groups.
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The aim of this paper is to avoid the lattice structure of the range space
and suggest the property of the ordered space that can substitute for the weak
s-distributivity which was so useful in the lattice case.

2. G-VALUED (SUB)MEASURES

Basic notions and a notation in this paper are used in the sense of refs.
2–4. As mentioned above, the range space of the measure m is a partially
ordered Abelian group G, i.e., a commutative group (G, 1) partially ordered
by a reflexive, antisymmetric, and transitive relation # which is consistent
with the group structure, i.e., a # b implies a 1 c # b 1 c for any a, b, c
P G. Of course, if, moreover, G is a real vector space, then a # b implies
l.a # l.b for any positive scalar l.

In the 1970s J. D. M. Wright developed the theory of vector lattice-
valued measures whose s-additivity is defined via the order structure of the
range space [8–10]. In ref. 10 he studied the concept of a V-valued measure
in the nonlattice case when V is a monotone s-complete partially ordered
vector space. As the vector structure itself is not essential for the concept of
a measure, we introduce the G-valued measure as follows.

Definition 2.1. Let (V , 6) be a measurable space, G be a monotone s-
complete, partially ordered Abelian group, and m be a map m: 6 → G. m is
said to be a G-valued measure on (V , 6) if :

(1) m(0⁄ ) 5 0 and m(A) f 0 for any A P 6.
(2) m is s-additive, i.e.,

m1ø
`

i51
Ai2 5 ~ Ho

n

i51
m(Ai) . n 5 1, 2, . . .J

whenever (Ai) is a disjoint sequence of elements in 6.

For brevity, we use (`
i51 ai instead of ∨{(n

i51 ai. n 5 1, 2, . . .}. It is
easy to see that a G-valued measure is s-subadditive and continuous from
below at every A P 6.

Definition 2.2. Let (V , 6) be a measurable space, G be a monotone s-
complete, partially ordered Abelian group, and m be a map m: 6 → G. m is
said to be a G-valued submeasure on (V , 6) if :

(1) m(0⁄ ) 5 0.
(2) m(A) d m(B) whenever A , B, A, B P 6.
(3) m(A ø B) d m(A) 1 m(B) for any A, B P 6.
(4) ∧m (An) 5 0 whenever (An) is a monotone decreasing sequence in

6 for which ù`
n51 An 5 0⁄ .
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Lemma 2.3. Let m be a G-valued submeasure on (V ,6). Then:

(1) m is continuous from below at any A P 6.
(2) m is s-subadditive.

3. REGULARITIES OF ORDERED SPACES

As mentioned in the Introduction, in the lattice case the key role in the
solution of the Banach problem is played by the condition of the weak s-
distributivity of the range space of m. We recall that a vector lattice V is said
to be weakly s-distributive if whenever (aij ) is bounded from above, such
that aij ' 0 ( j → `) for each i P N, then

` H~
`

i51
aiw(i).w: N → NJ 5 0

It is worth mentioning that this concept has a crucial role in the measure
extension property of vector lattices [8, Theorem T]. For the case when G
is a monotone s-complete Abelian group we substitute the above concept
for the concept of the g-regularity of G.

A monotone s-complete, partially ordered Abelian group G is said to
be a g-regular group if

` Ho
`

i51
aiw(i).w: N → NJ 5 0

whenever (aij ) is a bounded, double sequence in G such that aij ' 0 ( j →
`) for each i P N. For brevity, notation (`

i51 aiw(i) stands for ~
{(n

i51 aiw(i).n 5 1, 2, . . .}, so that (`
i51 aiw(i) 5 ` when {(n

i51 aiw(i)} is not
bounded from above. We point out that the property of G to be g-regular
implicitly requires that if (aij ) is bounded and aij ' 0 ( j → `) for each i P
N, then there exists w: N → N such that {(n

i51 aiw(i)} is bounded from above
so that (`

i51 aiw(i) is in G. The next example exhibits a vector lattice in which
this is not always the case.

Example 3.1. Let l` be the sequence space whose elements are all
bounded real sequences. Let the ordering be coordinatewise. Consider a
double sequence (aij ) defined by

aij (k) 5 0 for k 5 1, 2, . . . , j 2 1 and each i, j P N

aij (k) 5 1 for k 5 j, j 1 1, . . . and each i, j P N

It can be easily verified that for every w: N → N the sequence
((n

i51 aiw(i)) is not bounded from above.
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It is easy to see that in the class of lattice groups the condition of g-
regularity is strictly stronger than weak s-distributivity (see ref. 6 for the
next relationships). On the other hand, the next proposition gives new light
on the concept of g-regularity of the lattice groups.

Proposition 3.2. Let G be a s-complete lattice group. Let (aij ) be a
bounded, double sequence in G, aij ' 0 ( j → `) for each i P N. If there
exists w0: N → N such that the sequence {(n

i51 aiwo(i)} is bounded, then

`Ho
`

i51
aiw(i).w: N → NJ 5 0

Proof. Let b be a lower bound for {(`
i51 aiw(i).w: N → N}. Set c 5 b ∨

0. Obviously, c is also lower bound of {(`
i51 aiw(i).w: N → N} and c f 0.

However, we show that c . 0 leads to a contradiction, so that c 5 0 and it
gives b d 0. This proves that 0 is the greatest lower bound of
{(`

i51 aiw(i).w: N → N}.
Now assuming that positive c is a lower bound of {(`

i51 aiw(i).w: N →
N}, we wish to derive a contradiction. According to Theorem 4 in ref. 1,
for G there exist a Stone space E (i.e., compact Hausdorff and extremally
disconnected) and a lattice group isomorphism h of G onto a sublattice group
of the vector lattice ^(E ) of all almost finite continuous functions on E
which preserves all suprema and infima in G, i.e., if x0 5 ∧xa in G, then
h(x0) 5 ∧h(xa) in ^(E ).

Applying this result to (aij ), we get h(aij ) ' 0 ( j → `), for each i P
N in ^(E ). According to Lemma 2.2 in ref. 9, the set Ai 5 {x P E: in
f {h(aij )(x): j 5 1, 2, . . .} . 0 } is a meager set (i.e., the set of the first
category). Of course, ø`

i51 Ai is meager and for every x P E \ø`
i51 Ai we

have h(aij )(x) ' 0 ( j → `) for each i P N. Because c is positive, h(c) .
0 and there exist clopen U, U , E, and real «, « . 0, such that h(c)(x) .
« for all x P U. According to the Baire category theorem, U \ø`

i51 Ai is
nonempty, so that there is x0 P U \ø`

i51 Ai.
Since h(aij )(x0) ' 0 ( j → `) for each i P N, it is possible to define

c: N → N such that w0(i) d c(i) for every i P N so that {(n
i51 aic(i)} is

bounded in G (i.e., (`
i51 aic(i) P G) and

o
`

i51
h(aic(i))(x0) # «

Let us summarize; c is a lower bound of {(`
i51 aiw(i).w: N → N}, so that h(c)

is a lower bound of {(`
i51 h(aiw(i)).w: N → N}. But h(c)(x0) . «, whereas

(`
i51 h(aic(i))(x0) # «. Because the ordering in ^(E ) is pointwise, we get the

desired contradiction.
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It is shown in ref. 6 that the g-regularity in the class of Riesz spaces is
strictly less restrictive than the condition regularity in the sense of Kantorovich
(i.e., less restrictive than so called strong Egoroff property of Riesz space;
for details, see ref. 4, Chapter 10).

4. MAIN RESULT

Theorem 4.1. Let us assume the continuum hypothesis. Let (V , 6) be
a measurable space and let E be a set of the power of the continuum. Let G
be a monotone s-complete, g-regular, partially ordered Abelian group and
m a G-valued measure on 6. If {Ax:x P E} is a family of pairwise disjoint
sets in 6 such that ø{Ax: x P F} P 6 for any F , E, then

m(ø{Ax: x P E}) 5 ∨{m(ø{Ax: x P I}).I , E, I is finite}

Proof. Let us set b 5 m(ø{Ax: x P E}) and denote by ( the system of
all finite subsets of E, i.e., ( 5 {I.I , E, I is finite}. It is evident that
m(ø{Ax: x P I}) d b for any I P (. We are to prove that if c P G and
such that m(ø{Ax: x P I}) d c for any I P (, then b d c (i.e., b is the least
upper bound of {m(ø{Ax: x P I}).I P (}.

Now we use the Banach–Kuratowski theorem (e.g., ref. 4, paragraph
75), which states that under the continuum hypothesis there exists a double
sequence (Eij ) of subsets of E such that:

(1) Eij , Eij11 for each i, j P N.
(2) ø`

j51 Eij 5 E for each i P N.
(3) For any w: N → N the intersection ù`

i51 Eiw(i) is a countable set.

Let us set Bij 5 ø{Ax: x P E \Eij} and aij 5 m(Bij ). From (1) we get
that Bij . Bij11 for each i, j P N. Due to (2) we have Bij ' 0⁄ and the
continuity of m gives aij ' 0 ( j → `) for each i P N. According to (3), for
any w: N → N it is possible to enumerate points of ù`

i51 Eiw(i) so
ù`

i51Eiw(i) 5 {x1, x2, x3, . . .}.
From the fact that c P G is the upper bound of {m(ø{Ax: x P I}).I P

(} we get m(Ax1 ø Ax2 ø . . .ø Axn) d c for every n P N and from the
continuity of m we have m(Ax1 ø Ax2 ø . . .ø Axn . . .) d c. From now on

b 2 c # m(ø{Ax: x P E}) 2 m(ø{Axi: i 5 1,2, . . .})

5 m(ø{Ax: x P E}) 2 m(ø{Ax: x P ù`
i51 Eiw(i)})

5 m(ø{Ax: x P E \ù`
i51 Eiw(i)})

5 m(ø{Ax: x P ø`
i51 (E \Eiw(i)})
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# o
`

i51
m(ø{Ax: x P E \Eiw(i)}) 5 o

`

i51
m(Biw(i))

We derive that b 2 c # (`
i51 aiw(i) for any w: N → N. From the g-regularity

of G we get b 2 c # 0, i.e., b # c, and this completes the proof.

In the chain of (in)equalities we used the fact that if F , E, then m(ø{Ax:
x P E}) 2 m(ø{Ax: x P F} 5 m(ø{Ax: x P E \F}, which holds due to the
fact that Ax ù Ay 5 0⁄ for x Þ y. If m is a submeasure, we have the inequality
in the above equality. With respect to Lemma 2.3, Theorem 4.1 holds also
in the case when m is a submeasure.

Theorem 4.2. Let us assume the continuum hypothesis. Let (X, 6) be a
measurable space and let X be a set of the power of the continuum. Let G
be a monotone s-complete, g-regular, partially ordered Abelian group and
m be a G-valued submeasure on 6 such that m({x}) 5 0 for all x P X. If
there exists a set E P 6 such that m(E ) . 0, then there exists F , X such
that F ¸ 6.

Proof. If E P 6 for every E , X, then E 5 ø{{x}: x P E}, and
according to Theorem 4.1, we get

m(E ) 5 ∨{m(ø{ {x}: x P I}).I , E, I is finite }

5 ∨{0.I , E, I is finite } 5 0

so that m is trivial—a contradiction.
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